首页> 外文OA文献 >Vehicle tracking by non-drifting mean-shift using projective Kalman filter
【2h】

Vehicle tracking by non-drifting mean-shift using projective Kalman filter

机译:使用投影卡尔曼滤波器进行非漂移均值漂移的车辆跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robust vehicle tracking is essential in traffic monitoring because it is the groundwork to higher level tasks such as traffic control and event detection. This paper describes a new technique for tracking vehicles with mean-shift using a projective Kalman filter. The shortcomings of the mean-shift tracker, namely the selection of the bandwidth and the initialization of the tracker, are addressed with a fine estimation of the vehicle scale and kinematic model. Indeed, the projective Kalman filter integrates the non-linear projection of the vehicle trajectory in its observation function resulting in an accurate localization of the vehicle in the image. The proposed technique is compared to the standard Extended Kalman filter implementation on traffic video sequences. Results show that the performance of the standard technique decreases with the number of frames per second whilst the performance of the projective Kalman filter remains constant.
机译:强大的车辆跟踪在交通监控中至关重要,因为它是更高级别任务(如交通控制和事件检测)的基础。本文介绍了一种使用投影卡尔曼滤波器跟踪均值偏移的车辆的新技术。均值漂移跟踪器的缺点,即带宽的选择和跟踪器的初始化,通过对车辆比例尺和运动学模型的精细估计得以解决。实际上,投影卡尔曼滤波器将车辆轨迹的非线性投影整合到其观测函数中,从而在图像中精确定位了车辆。将所提出的技术与交通视频序列上的标准扩展卡尔曼滤波器实现进行了比较。结果表明,标准技术的性能随每秒帧数的增加而降低,而投射式卡尔曼滤波器的性能保持不变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号